Radial basis function neural network in fault detection of automotive engines
نویسندگان
چکیده
Fault detection and isolation have become one of the most important aspects of automobile design. A fault detection (FD) scheme is developed for automotive engines in this paper. The method uses an independent Radial Basis Function (RBF) Neural Network model to model engine dynamics, and the modelling errors are used to form the basis for residual generation. A dependent RBFNN model is a model which uses output data of a plant as a target output then use it to train the neural network, while, The independent RBFNN model is a higher accuracy than the dependent model and the errors can be detected by this model, this is because this model does not dependent on the output of the plant and it will use its output as a target, so if any faults in the plant will be not effect in the model and this faults will be detected easily and clearly. The method is developed and the performance assessed using the engine benchmark, the Mean Value Engine Model (MVEM) with Matlab/Simulink. Five faults have been simulated on the MVEM, including three sensor faults, one component fault and one actuator fault. The three sensor faults considered are 10-20% change superimposed on the outputs of manifold pressure, temperature and crankshaft speed sensors; one component fault considered is air leakage in intake manifold and Exhaust Gas Recycle (EGR); the actuator fault considered is the malfunction of fuel injector. The simulation results showed that all the simulated faults can be clearly detected in the dynamic condition throughout the operating range.
منابع مشابه
Fault Detection and Identification of Automotive Engines Using Neural Networks
Fault detection and isolation (FDI) in dynamic data from an automotive engine air path using artificial neural networks is investigated. A generic SI mean value engine model is used for experimentation. Several faults are considered, including leakage, EGR valve and sensor faults, with different fault intensities. RBF neural networks are trained to detect and diagnose the faults, and also to in...
متن کاملSensor fault diagnosis for automotive engines with real data evaluation
In this paper, a new fault diagnosis method using an adaptive neural network for automotive engines is developed. A redial basis function (RBF) network is used as a fault classifier with its widths and weights on-line adapted to cope with model uncertainty and time varying dynamics caused by mechanical wear of engine parts, environment change, etc. Five different sensors are investigated for an...
متن کاملSensor fault detection, isolation, accommodation and unknown fault detection in automotive engine using AI
Sensor fault detection, isolation (FDI) and accommodation has been investigated along with detection of unknown faults for an automotive engine. Radial basis function (RBF) neural networks are used for fault diagnosis. The RBF network is trained off line with K-means and batch least squares (BLS) algorithms. No fault and fault data are simulated in Matlab for four different sensors e.g. throttl...
متن کاملFault diagnosis for engine air path with neural models and classifier
Fault detection and isolation (FDI) have become one of the most important aspects of automobile design. A new FDI scheme is developed for automotive engines in this paper. The method uses an independent radial basis function (RBF) neural network model to model engine dynamics, and the modelling errors are used to form the basis for residual generation. A dependent RBFNN model is a model which u...
متن کاملApplication of Radial Basis Neural Networks in Fault Diagnosis of Synchronous Generator
This paper presents the application of radial basis neural networks to the development of a novel method for the condition monitoring and fault diagnosis of synchronous generators. In the proposed scheme, flux linkage analysis is used to reach a decision. Probabilistic neural network (PNN) and discrete wavelet transform (DWT) are used in design of fault diagnosis system. PNN as main part of thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999